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Abstract
Species habitat suitability modeling and mapping (HSM) 
at large spatial scales (e.g., continental, global) and at fine 
spatiotemporal resolutions helps understand spatiotempo-
ral dynamics of species distributions (e.g., migratory birds). 
Such HSM endeavors often involve “big” environmental and 
species datasets, which traditional software tools are often 
incapable of handling. To overcome the computational chal-
lenges facing conducting big data- involved HSM tasks, this 
study develops a big data- enabled high- performance com-
putational framework to conduct HSM efficiently on large 
numbers of species records and massive volumes of envi-
ronmental covariates. As a demonstration of its usability, 
PyCLKDE was implemented based on the computational 
framework for flexibly integrating multi- source species 
data for HSM. The computing performance of PyCLKDE 
was thoroughly evaluated through experiments modeling 
and mapping Empidonax virescens habitat suitability in the 
continental Americas using high- resolution environmental 
covariates and species observations obtained from citizen 
science projects. Results show that PyCLKDE can effec-
tively exploit computing devices with varied computing 
capabilities (CPUs and GPUs on high- end workstations or 
commodity laptops) for parallel computing to accelerate 
HSM computations. PyCLKDE thus enables conducting 
big data- involved HSM using commonly available comput-
ing resources. Using PyCLKDE as an example, efforts are 
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1  | INTRODUC TION

Habitat suitability modeling and mapping (HSM) establishes mathematical models depicting species responses to 
environmental conditions and, based on such models, generates predictive maps representing spatial variation 
of species habitat suitability (Franklin & Miller, 2009). HSM, along with other similar techniques such as species 
distribution modeling, ecological niche modeling, gradient analysis, and resource selection functions (Hirzel & Le 
Lay, 2008), is widely used for both theoretical and applied purposes (Franklin & Miller, 2009). For example, the 
derived species– environment response models reveal species ecological niches, so resource requirements for 
species survival can be better understood (Soberón & Nakamura, 2009; Thorn, Nijman, Smith, & Nekaris, 2009). 
The produced habitat suitability maps inform decision- making in biodiversity conservation (e.g., spatial conserva-
tion prioritization) (Rodríguez, Brotons, Bustamante, & Seoane, 2007). HSM is a two- step process. In the modeling 
step, the relationships between species habitat suitability and environmental conditions are modeled based on 
localities of species occurrence and absence indicating habitat preference (or avoidance) and values of environ-
mental covariates at these locations characterizing in- situ environmental conditions using quantitative methods 
(Guisan & Zimmerman, 2000). At the prediction (mapping) step, the species– environment response model is pro-
jected into geographic space to produce a gridded (raster) suitability map by applying the model to a stack of 
environmental covariate layers in a cell- by- cell fashion (Franklin & Miller, 2009) (i.e., the habitat suitability value 
at each raster cell is calculated following mathematical equations in the model with covariate values at that cell 
as inputs).

Understanding spatiotemporal dynamics of species distributions (e.g., migratory birds) may require HSM ef-
forts at large spatial scales (e.g., continental, global) and/or at fine spatiotemporal resolutions (Fink et al., 2020). 
Traditionally, HSM studies are constrained by the scarcity of high- resolution environmental covariate data and 
the high costs of collecting species data (e.g., through field surveys). As a result, many studies relied on rela-
tively small numbers of species records and were conducted in small geographic areas or at rather coarse reso-
lutions. Recently, the increasing availability of geospatial data capturing species occurrence and environmental 
covariates at high spatial and temporal resolutions has made it feasible to pursue HSM involving big data (Farley, 
Dawson, Goring, & Williams, 2018). For instance, remote sensing technologies enable obtaining spatially and tem-
porally high- resolution environmental data products at an unprecedented speed (Tuanmu & Jetz, 2015). Modern 
biodiversity- themed citizen science projects such as eBird (Wood, Sullivan, Iliff, Fink, & Kelling, 2011) and iNatu-
ralist (Unger, Rollins, Tietz, & Dumais, 2021) engage millions of volunteer participants across the globe in contrib-
uting tens of thousands of species observations on a daily basis. Even more abundant species records are compiled 
and made freely available by the Global Biodiversity Information Facility (GBIF.org, 2021).

Nonetheless, methodological and computational challenges are associated with modeling and mapping spe-
cies habitat suitability with such big data. Regarding methodological issues, volunteer- contributed species data 
are subject to various biases (e.g., spatial, temporal, contributor, and observation bias) (Zhang, 2020), which often 
degrade the quality of inferences drawn from the data (Zhang & Zhu, 2018). Devising methodologies to ade-
quately mitigate the adverse impacts of biases in species data on modeling and prediction has long been an active 
area of research (Johnston, Moran, Musgrove, Fink, & Baillie, 2020; Pardo, Pata, Gómez, & García, 2013; Zhang & 
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Zhu, 2019; Zhu et al., 2015). Moreover, as species data are accumulating from many different sources, it is ben-
eficial to develop methods for effectively integrating multi- source species data for HSM. Some methodological 
frameworks have been proposed and tested for integrating species data at various levels (Fletcher et al., 2019; 
Zhang et al., 2020).

From a computational perspective, conducting HSM over extensive geographic areas that involve large num-
bers of species records, voluminous environmental covariate layers, and complex modeling methods implies in-
tensive computing demands. Existing HSM software tools, developed mainly for traditional HSM tasks that often 
utilize relatively small datasets, may not be capable of handling big data at all, or at least efficiently. There are a va-
riety of software tools for conducting HSM and similar exercises (e.g., species distribution modeling) (see Ahmed 
et al., 2015). Many HSM tools are implemented as R packages because of the rich set of statistical methods readily 
available in the R environment. Some tools are implemented in the Python programming language or in Matlab (a 
proprietary programming language and computing environment). Other tools are also provided as a standalone 
graphical user interface (GUI) or cloud computing workflow (Table 1).

Two common bottlenecks exist when these tools are used to conduct big data- involved HSM tasks. The first 
is that existing tools are not able to handle large volumes of environmental data. The tools operate assuming that 
environmental covariate layers can be read into computer memory all at once and are readily available for subse-
quent computations (e.g., extracting covariate values at species occurrence localities for model calibrations, con-
ducting model- based prediction cell- by- cell to produce a suitability map). This premise is reasonable for traditional 
HSM tasks conducted in small study areas or at coarse spatial resolutions, but becomes untenable when stacks of 
high- resolution environmental covariates over large areas are used in HSM tasks, as the volume of the environ-
mental datasets can often exceed hundreds of gigabytes, if not terabytes, which is well beyond the memory space 
available on most computers (Zhang, Zhu, Liu, Guo, & Zhu, 2021). If the tools are run on such large datasets, they 
would simply halt or crash.

The second bottleneck is extremely long computing time. Most tools do not exploit data and computation 
parallelism and run only on a single computing thread enabled by the physical core of a central process-
ing unit (CPU). Even if the memory bottleneck was overcome, it could take extremely long for such tools to 

TA B L E  1 Existing software tools for conducting species habitat suitability modeling and mapping and similar 
tasks (e.g., species distribution modeling)

Name Form Reference

sdm R package Naimi and Araújo (2016)

BIOMOD R package Thuiller, Lafourcade, Engler, and Araújo 
(2009)

dismo R package Hijmans and Elith (2013)

SDMTools R package VanDerWal et al. (2014)

adeHabitatHS R package Calenge (2015)

SDMToolbox Python tools integrated within ArcGIS Brown (2014)

CNN- SDMs Python package Deneu et al. (2021)

MOGP- SDM Python package Ingram et al. (2020)

Joint- SDM Matlab extension Tikhonov et al. (2020)

ENFA Standalone GUI programmed with C/C++ Hirzel, Hausser, Chessel, and Perrin 
(2002)

openModeller Standalone GUI programmed with C/C++ Muñoz et al. (2011)

Maxent Standalone GUI programmed with Java Phillips et al. (2020)

Cloud- SDM Cloud computing workflow Candela et al. (2016)
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conduct big data- involved HSM computing tasks, wherein large amounts of species data and complex mod-
eling methods are used in model calibrations, and model- based prediction (mapping) is performed on stacks 
of high- resolution environmental covariates. To the best of my knowledge, only “Maxent” can utilize multiple 
CPU threads for computation (Phillips, Dudík, & Schapire, 2020) and the cloud- based workflow could exploit 
computing resources on multiple nodes (Candela, Castelli, Coro, Pagano, & Sinibaldi, 2016). Regarding accel-
erating computation through parallel computing, it has been proven that graphics processing units (GPUs) can 
bring a much greater speedup compared to CPUs (e.g., Tang, Feng, & Jia, 2015; Zhang, Zhu, & Huang, 2017). 
Yet there is no support for GPU parallel computation by HSM tools implemented in the R packages. Only the 
methods implemented in Python by Deneu et al. (2021) and Ingram, Vukcevic, and Golding (2020) utilized 
GPUs in model calibrations.

It is possible to complete big data- involved HSM tasks within an extended period of time by running existing 
tools on high- performance computing facilities, as they are equipped with powerful CPUs and abundant memory. 
However, only certain institutions can afford such advanced facilities. In general, few researchers, practitioners, 
and institutions have access to such “institutional- grade” computing resources, either physically or through cloud 
computing services. Instead, they have to rely on the limited computing capability (e.g., as provided by CPUs 
and GPUs) and memory space of “personal- grade” computing hardware available to them (e.g., laptop, desktop, 
workstation, and server computers), and effectively utilize such resources to achieve their goals via some form of 
high- performance computing solutions (Zhang, 2010; Zhang et al., 2021).

This study develops a big data- enabled high- performance computational framework for conducting HSM tasks 
that overcomes the above bottlenecks by exploiting parallel computing capabilities on “personal- grade” comput-
ers and by taking a “divide- and- conquer” strategy to avoid keeping environmental covariate layers all in mem-
ory. The framework was implemented in Python based on the widely used Geospatial Data Abstraction Library 
(GDAL) for raster spatial data reading/writing (Warmerdam, 2008) and the widely supported Open Computing 
Language (OpenCL) library for parallel computing (Stone, Gohara, & Shi, 2010). As an example, the kernel density 
estimation (KDE)- based method for modeling and mapping species habitat suitability (Zhang et al., 2020; Zhang, 
Zhu, Windels, & Qin, 2018) was implemented using the framework. The usability of the implemented tool, named 
PyCLKDE, was demonstrated through experiments of modeling and mapping habitat suitability for the Acadian 
flycatcher (Empidonax virescens) in the continental Americas at 1 km spatial resolution using a stack of 31 environ-
mental covariates and species records from eBird and iNaturalist.

2  | METHODOLOGY

2.1 | Big data- enabled computational framework for HSM

A big data- enabled high- performance framework (Figure 1) was developed to overcome the two computational 
bottlenecks in modeling and mapping species habitat suitability involving large numbers of species localities and/
or high- resolution covariates over large areas. This framework features two strengths compared to existing HSM 
software tools. First, covariate files are read into computer memory all at once only if the full- extent covariates 
can fit in the memory. Otherwise, only one block of the covariates at a time is read. Accordingly, covariate values 
at species localities are extracted without keeping the full- extent covariates in memory. The prediction step and 
subsequent writing results to files are also conducted in a block- by- block fashion. Moreover, the computationally 
intensive steps (e.g., modeling and prediction) are accelerated through parallel computing on CPUs and/or GPUs 
of any level of computing capabilities.

The framework was implemented in Python following an object- oriented programming paradigm. Python 
bindings of GDAL were used for block- based raster reading/writing (GDAL/OGR contributors, 2021). GDAL is a 
widely used open- source C/C++ library for efficiently reading and writing raster spatial data (Warmerdam, 2008) 



    |  5ZHANG

and it supports reading and processing raster by rectangular blocks with minimal overheads (Qin & Zhu, 2020). 
A utility class named “raster” was designed to represent the environmental covariate layer and implement block- 
based raster operations (e.g., reading/writing). This class can read/write data from/to GeoTIFF files. Another util-
ity class “points” was designed to represent species locations and support relevant manipulations (e.g., extracting 
covariate values at species locations based on block- based raster reads). This class can read/write species loca-
tions from/to CSV files. A configuration file is offered wherein the user can configure whether to enable the “block 
mode” and, if yes, determine block dimension according to available computer memory, covariate data volume, 
and physical layout of covariate raster files (Zhang et al., 2021). The Python package NumPy (Harris et al., 2020) 
was used to perform various underlying array operations.

Parallelizing HSM computations was implemented based on PyOpenCL, the Python wrappers of OpenCL 
(Klöckner et al., 2012). OpenCL is a C/C++ parallel programming library that can exploit heterogenous parallel 
computing resources on any hardware (e.g., multi- core CPUs, many- core GPUs) of any level of computing capabil-
ities (e.g., commodity computers, high- end server computers) manufactured by any vendors (e.g., NVIDIA, AMD, 
Intel) as long as they support the OpenCL standard (Stone et al., 2010). PyOpenCL runs parallel computation tasks 
on computing devices by executing a kernel function on multiple threads simultaneously (Klöckner et al., 2012; 
Stone et al., 2010). Only the kernel function needs to be written in C/C++. Other operations such as moving data 
back- and- forth between host and device are implemented in Python within the framework utilizing PyOpenCL 
functionalities. The host Python program compiles kernel functions on- the- fly and generates GPU/CPU runtime 
code for parallel execution on devices (Klöckner et al., 2012). With this framework, computationally expensive 
steps in HSM (e.g., modeling and prediction) can be accelerated by implementing kernel functions to carry out 
modeling and/or prediction in parallel (Section 2.2.2). The framework provides utility functions for detecting com-
puting platforms and devices available on the computer, setting up the OpenCL computing environment, moving 
data between host and device, etc. Through the configuration file, the user can set which computing device to use 
for parallel computing. The user can build upon these utility functions (and the “raster” and “points” utility classes) 
and implement their own modeling method- specific kernel functions for HSM.

F I G U R E  1 Workflow of the big data-  and parallel computing- enabled framework for species habitat 
suitability modeling and mapping. The dashed box on the right illustrates implementing the kernel density 
estimation- based method for suitability modeling (Section 2.2) using the framework
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Other utility functions are also provided for pre- processing covariate data and species data (masking covari-
ates so they share the same geographic extent and no- data area, removing species locations in no- data area, 
etc.), plotting maps (covariate layers, species locations, suitability map), plotting suitability– environment response 
curve regarding individual covariates, and conducting model performance (mapping accuracy) evaluation (e.g., 
plotting the receiver operating characteristic [ROC] curve and computing the area under the curve [AUC]; Hirzel, 
Le Lay, Helfer, Randin, & Guisan, 2006).

The infrastructure (e.g., utility classes and functions) and workflow provided by this generic framework are 
generally applicable for HSM and related tasks (e.g., species distribution modeling). The framework thus offers 
a skeleton for implementing big data-  and parallel computing- enabled HSM tools. The developed framework is 
open- source and freely available at https://rb.gy/kijlwr. As a demonstration, the KDE- based method for HSM was 
implemented based on the framework (and named PyCLKDE).

2.2 | Implementing PyCLKDE based on the framework

2.2.1 | The KDE- based method for HSM

The KDE- based method for HSM is a “presence- only” method that requires only species occurrence localities 
along with environmental covariates for modeling species– environment responses (Zhang et al., 2018). It provides 
a mechanism to account for spatial sampling bias in species occurrences (Zhu et al., 2015) and offers a flexible 
methodological framework to integrate multi- source species data at different levels (data, knowledge, and model 
level) (Zhang et al., 2020). An overview of the KDE- based method is provided below. Readers interested in more 
details should refer to the original references.

Basics of the KDE- based method
The KDE- based method models species habitat suitability at a given environmental condition following a “rule- 
based” approach that involves modeling suitability at two levels: suitability regarding individual covariates and 
the overall suitability considering all covariates. At the individual covariate level, species habitat suitability– 
environment response regarding an environmental variable is modeled based on the probability density function 
(PDF) of covariate values at species occurrence locations (occurrence PDF) and the PDF of covariate values across 
the study area (background PDF). Given n species occurrence localities and the covariate data layer represent-
ing environmental variable x (e.g., elevation), covariate values at cells in which species occurrence locations fall 
(sample data points xi) can be extracted. Then, the occurrence PDF can be estimated using KDE (Silverman, 1986):

where K is a kernel density function for which the Gaussian kernel is often adopted (Silverman, 1986). Essentially, the 
probability at estimation data point x is the average of kernel density contributions from all sample data points xi. In 
computing the PDF, all sample data points xi, by default, are weighted with an equal weight of 1/n. However, differing 
weights can be used to correct for sample selection bias in species occurrences (Zhu et al., 2015).

In Equation (1), hx is a smoothing parameter called “bandwidth.” It is a crucial parameter for KDE which affects 
the smoothness of the estimated PDF function (“flat” vs. “spiky”). When the sample size n is large, the “rule- of- 
thumb” method can be used to determine bandwidth based on sample size and standard deviation of the sample 
data points (Silverman, 1986) (this is the default bandwidth option in PyCLKDE). Otherwise, an optimal bandwidth 
can be determined based on the maximum likelihood criterion through cross- validation on the sample data points 
using the “golden section search” optimization procedure (Brunsdon, 1995). When the bandwidth is constant 

(1)PDFoccurrence (x) =
1

n

n
∑

i=1

1

hx
K

(

x − xi

hx

)

https://rb.gy/kijlwr
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across sample data points xi, it is a fixed- bandwidth KDE, which tends to oversmooth the PDF over intervals with 
dense sample data points. In contrast, adaptive KDE— wherein the bandwidth is allowed to vary across sample 
data points— could reveal more subtle density variations (Zhang et al., 2017). Optimal parameters for computing 
adaptive bandwidths can also be determined based on the maximum likelihood criterion (Brunsdon, 1995).

Similarly, background PDF can be estimated using the KDE method. In this case, the sample data points consist 
of covariate values at all raster cells (or often a random subset of cells) in the study area, and sample size is the 
number of cells (the “rule- of- thumb” bandwidth by default is always used in PyCLKDE for estimating background 
PDFs, although users can change it to the other two bandwidth options through a configuration file). Based on the 
estimated occurrence PDF and background PDF, the ratio of the two functions, PDFratio(x) (Equation 2), is com-
puted to indicate habitat preference while taking resource availability into account (Zhang et al., 2018); the habitat 
suitability regarding covariate x, S(x), is modeled as an inverse- logit of the ratio (Equation 3):

The overall suitability considering all m covariates (i.e., x1, x2, xj ,…, xm) can then be determined based on the 
suitability values regarding individual covariates following a certain synthesizing strategy, for example, “weighted 
average” [Equation (4); covariates are weighted equally by default] or “limiting factor” (Zhang et al., 2018; Zhu 
et al., 2015):

Conceptually, Equations (1)– (4) can be applied, in sequence, to each raster cell in the study area to compute a 
suitability value, and hence predict a suitability map for the study area.

Integrating multi- source species data
The KDE- based method also provides a framework for integrating species data from multiple sources for modeling 
and mapping species habitat suitability (Zhang et al., 2020). The integration can be achieved at three levels: data, 
knowledge, and model level. For data- level integration, species occurrence locations are simply pooled together 
before estimating the occurrence PDF.

For knowledge- level integration, species occurrences from different sources are used separately in modeling 
up to Equation (3) (computing suitability regarding individual covariates). Outputs from Equation (3) are function 
curves reflecting “knowledge” on species suitability– environment responses regarding individual environmental 
variables. The knowledge- level integration is therefore achieved by synthesizing the response curves modeled 
from different data sources (on each covariate) following a certain integration strategy (e.g., obtaining a synthe-
sized curve by taking the minimum, mean, or maximum of the curves; Zhang et al., 2020).

For model- level integration, species occurrences from different sources are used separately in modeling up to 
Equation (4) (computing overall suitability considering all covariates). The suitability values modeled from different 
data sources are then synthesized following a certain integration strategy (e.g., computing the synthesized suit-
ability as the minimum, mean, or maximum of the suitability values; Zhang et al., 2020).

The integration operators (e.g., minimum, mean, maximum) used in knowledge-  and model- level integration repre-
sent different principles for data integration. While “minimum” reflects a rather conservative and stringent approach, 
“maximum” stands for a liberal and tolerant view. Zhang et al. (2020) reported data-  and model- level integration 

(2)PDFratio (x) =
PDFoccurence (x)

PDFbackground (x)

(3)S (x) =
1

1 + e1−PDFratio(x)

(4)S
(

x1, x2, xj ,…, xm
)

=

m
∑

k=1

wkS
(

xk
)
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performed better than knowledge- level integration in terms of mapping accuracy, and using the “minimum” integra-
tion operator resulted in higher accuracy. Thus, “minimum” was set as the default integration operator. Nonetheless, 
the KDE- based method offers a flexible framework for integrating multi- source species data at different levels and 
can accommodate various integration principles. With this integration framework, one may choose the appropriate 
level of integration and integration strategy, depending on the specific context of the HSM task at hand.

2.2.2 | Implementing PyCLKDE

The KDE- based method was implemented using the proposed big data- enabled computational framework for 
HSM (named PyCLKDE). PyCLKDE makes use of the utility classes (“raster” and “points”) and functions for reading 
in covariates (in “block mode” if necessary) and species locations, extracting the data matrix needed for modeling, 
performing model evaluation, and writing the predicted suitability map to files. The framework only needed to be 
extended to implement the KDE- based modeling and the prediction steps.

KDE is used for estimating PDFs in the modeling step. KDE is known to be computationally expensive when 
performed on large datasets (e.g., large numbers of sample data points) and/or iterative optimization procedures 
are used to determine the optimal bandwidths (Yuan, Chen, Gui, Li, & Wu, 2019; Zhang et al., 2017). A class named 
“KDE” was designed and implemented to compute probability densities (Equation 1) at many estimation data 
points in parallel on multi- core CPUs or many- core GPUs based on the PyOpenCL library. That is, each parallel 
computing thread computes the probability density at one estimation data point by calculating and averaging 
density contributions from all sample data points. A kernel function implementing the computation was written 
in C/C++ in just a few lines of code. The class has functions to manage data exchange between the host and the 
computing device. Moreover, it offers the flexibility of choosing different bandwidth options in estimating PDFs 
(i.e., “rule- of- thumb” fixed bandwidth, cross- validated fixed bandwidth, or adaptive bandwidth) through a config-
uration file.

Taking computation processes underlying the KDE- based method (modeling, prediction, and integration) lit-
erally, one would apply the sequence of computation steps cell- by- cell to generate a final suitability map. That 
is, using the covariate value at one cell as an input to compute a final suitability value before repeating the same 
computations at the next cell. However, this is computationally inefficient as computations may be unnecessarily 
repeated. For instance, the computation to determine bandwidth would be repeated when conducting KDE at 
each cell although the bandwidth, once determined, does not change across the cells. To avoid such repetitions, 
each step can be “bulk” applied to multiple inputs. As an example, when computing the occurrence PDF regard-
ing covariate x (e.g., elevation), evenly spaced estimation data points can be generated within the range of this 
covariate (e.g., elevation values starting from the minimum elevation to the maximum elevation at 1- m interval). 
KDE (Equation 1) can be applied to compute probability densities at the estimation data points in parallel with an 
OpenCL kernel function, needing to compute bandwidth only once. The background PDF can be computed in a 
similar way. A suitability– environment response function can then be derived based on the two PDFs (Equations 2 
and 3). It is essentially a curve depicting how suitability changes across the gradient of this covariate (knowledge- 
level integration is achieved by synthesizing such curves). Next, this function can be bulk applied to the covariate 
data layer to transform it into a suitability data layer regarding this covariate (a cell's suitability is the value of the 
response function at the estimation data point closest to the cell's covariate value). Suitability layers regarding 
individual covariates can then be synthesized to compute an overall suitability layer (Equation 4) (model- level inte-
gration is performed by synthesizing suitability layers resulting from multiple data sources). Such bulk operations 
on arrays can be performed very efficiently with functionalities offered by NumPy (Harris et al., 2020), and thus 
were not parallelized using PyOpenCL.

A class named “HSM” was designed to implement the complete workflow of the KDE- based method for HSM, 
either using a single set of species data or by integrating multi- source species data. PyCLKDE is open- source and 
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freely available on the GitHub site. Interested parties are welcome to use PyCLKDE for HSM exercises, and to ex-
tend the big data-  and parallel computing- enabled framework to implement their own modeling method- specific 
HSM workflow.

3  | E XPERIMENTS

Experiments were conducted to demonstrate the applicability of PyCLKDE to integrate multi- source data for 
modeling and mapping habitat suitability of E. virescens involving large numbers of species locations and high- 
resolution environmental covariates over North and South America. The computing performance of PyCLKDE, 
in terms of execution time, was also evaluated in different computing environments through the experiments. 
Execution times (e.g., total execution time, I/O time for reading covariates and writing resultant suitability raster, 
KDE computation time for estimating background and occurrence PDFs, and time for other computations) were 
recorded as the median execution times of three repeated runs.

3.1 | Experiment data

3.1.1 | Species data

Occurrence localities of E. virescens were obtained from eBird and iNaturalist, two large- scale citizen science 
projects where birders and nature watchers around the world collaboratively contribute species sightings to bio-
diversity databases (Vardi, Berger- Tal, & Roll, 2021; Wood et al., 2011). E. virescens is a small- sized migratory 
bird that is present in both North and South America. A set of n = 54,684 occurrence locations (Figure 2a) were 
extracted from the eBird basic dataset (eBird, 2019) over a 10- year period (2010– 2019). Another n = 211 occur-
rences (Figure 2b) over the same time period were extracted from the iNaturalist “research- grade” observations 
dataset (Ueda, 2021). There are many more E. virescens observations from eBird as birders in general prefer eBird 
over iNaturalist for logging birding records. Nonetheless, E. virescens occurrences from the two sources were used 
in the experiments to illustrate multi- source species data integration for modeling and mapping species habitat 
suitability.

F I G U R E  2 Occurrence locations of E. virescens obtained from: (a) eBird; and (b) iNaturalist (2010– 2019)
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3.1.2 | Environmental covariates

A set of 31 covariates at 1 km spatial resolution depicting bioclimatic variables, topographic variations, land 
cover, and terrestrial habitat heterogeneity were used for modeling and mapping E. virescens habitat suitability. 
Among them, 19 biologically meaningful bioclimatic variables were downloaded from WorldClim at 1 km spa-
tial resolution (Fick & Hijmans, 2017). These variables represent annual trends (e.g., mean annual temperature, 
annual precipitation), seasonality (e.g., annual range in temperature and precipitation), and extreme or limiting 
environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and 
dry quarters), and are often used in species distribution modeling and related ecological modeling techniques. 
Topographic data were extracted from the 1 km resolution global topography dataset (Amatulli et al., 2018). 
Elevation, slope gradient, sine of aspect, cosine of aspect, and roughness were used to reflect terrain varia-
tions. A land cover class covariate was derived from the 1 km global consensus land- cover product (evergreen/
deciduous needleleaf trees, evergreen broadleaf trees, deciduous broadleaf trees, mixed/other trees, shrubs, 
herbaceous vegetation, cultivated and managed vegetation, regularly flooded vegetation, urban/built- up, 
snow/ice, barren, and open water; Tuanmu & Jetz, 2014). A set of six variables was adopted to characterize 
terrestrial habitat heterogeneity at 1 km resolution (coefficient of variation, evenness, range, Shannon diver-
sity index, Simpson diversity index, and standard deviation; Tuanmu & Jetz, 2015). They are first- order texture 
measures derived from Enhanced Vegetation Index imagery acquired by the Moderate Resolution Imaging 
Spectroradiometer (MODIS).

All covariates (except for land cover) were normalized by first subtracting their respective mean from the 
original cell value and subsequently dividing the difference by their respective standard deviation. Covariate 
layers were stored as individual GeoTIFF files and were all masked to the spatial extent of the study area. 
The storage size of the files was roughly 40.4 GB. Each covariate layer is of the same dimension, 16,738 
rows × 20,011 columns, and is stored in the GeoTIFF file following a 1,024 rows × 1,216 columns block layout. 
If a covariate layer is read into memory in its full extent, it would require ~2.5 GB of memory space (Python 
uses 8 bytes to represent real numbers). Reading all 31 covariates into memory would need ~77.5 GB of mem-
ory, which outsizes the memory space on most computers. Thus, covariates had to be read into computer 
memory block by block at a certain block size. Block dimensions were set to multiples of the physical file 
block size (e.g., 2,048 rows × 1,216 columns) in PyCLKDE to improve reading speed (Qin & Zhu, 2020; Zhang 
et al., 2021). Based on sensitivity analyses on block dimension settings (Section 4.4), the block dimension for 
the experiments was set to 4,096 rows × 4,864 columns and 1,024 rows × 1,216 columns on the desktop and 
laptop, respectively.

3.2 | Computing environments

PyCLKDE was tested in two computing environments with distinct hardware and computing capabilities (Table 2). 
The high- end desktop workstation is equipped with an 8- core Intel Xeon CPU and an NVIDIA GPU. The commod-
ity laptop computer has a 2- core Intel i- 7 CPU and a discrete AMD GPU as well as an integrated Intel GPU. The 
computing environments were used to demonstrate the compatibility of PyCLKDE across computing hardware 
manufactured by different vendors with varying computing capabilities, and to assess how these varying condi-
tions would impact the computing performance of PyCLKDE. When running PyCLKDE in the two computing 
environments, the block dimension for reading covariates was set to 4,096 rows × 4,864 columns for the desktop 
and 1,024 rows × 1,216 columns for the laptop.
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3.3 | Experiment results

3.3.1 | Habitat suitability maps

The KDE- based method was applied to model and map E. virescens habitat suitability based on species oc-
currences from only eBird and by integrating species occurrences from eBird and iNaturalist at the data, 
knowledge, and model level (Figure 3). The training AUC values (computed with occurrence locations used in 
modeling plus randomly selected background locations) were all above 0.75 and close, indicating satisfactory 
model fitting (Hirzel et al., 2006). Compared to modeling using species occurrences from only eBird, integrat-
ing species occurrences from iNaturalist with eBird occurrences did not significantly change the spatial pattern 
on the predicted suitability map. This was expected because a much smaller number of species occurrences 
was taken from iNaturalist. Overall, areas predicted to be of relatively high habitat suitability are the eastern 
U.S. (known distribution range of E. virescens) and the southeastern part of South America (potential distribu-
tion area).

F I G U R E  3 Habitat suitability maps of E. virescens predicted based on occurrences from eBird only (a) and 
through integrating occurrences from eBird and iNaturalist at data level (b), knowledge level (c), and model  
level (d)
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3.3.2 | Computing performance

The above results were obtained by running PyCLKDE with “rule- of- thumb” fixed bandwidth on the desktop 
workstation using NVIDIA GPU as computing device. Individual habitat suitability modeling and mapping tasks 
were completed within 8 min (Table 3). Among the tasks, integrating occurrence data from eBird and iNatural-
ist for modeling and mapping at the model level is most time- consuming as it involves more computations (e.g., 
reading in covariates more than once, estimating occurrence PDFs separately for each data source). Overall, com-
putations involving using KDE to estimate background and occurrence PDFs takes up less than 2% of the total 
execution time as these computationally expensive steps were drastically accelerated through parallel computing 
(see Section 4.1 for more discussion). I/O (reading/writing) takes up about 20– 30% of the total execution time, and 
other computations take up around 68– 77%.

4  | DISCUSSION

4.1 | Effectiveness of parallel computing

The effectiveness of parallel computing in PyCLKDE was evaluated by comparing its computing performance 
against a benchmark where KDE computations were implemented in native Python codes that run on a single 
CPU thread (i.e., without OpenCL- based parallel computing). It took up to 45 min for the non- parallel version of 
PyCLKDE to complete individual HSM tasks (Table 4). The expensive KDE computations take up 80– 86% of the 
total execution time. Time spent on I/O takes up less than 5%, and other computations take up 10– 17%.

With respect to total execution time, PyCLKDE with OpenCL- based parallel computing running on GPU 
(Table 3) is overall 6 to 8 times faster than the non- parallel benchmark implementation. Nonetheless, when 
only comparing time spent on KDE computations, OpenCL- based parallel computing is 275 to 405 times faster. 
The computing performance of PyCLKDE with OpenCL- based parallel computing running on a multi- core CPU 
(Table 5) is similar to that running on a GPU. It is 6 to 8 times faster and 275 to 345 times faster than the bench-
mark in terms of total execution time and KDE computation time, respectively. OpenCL- based parallel computing 
significantly accelerated KDE computations in PyCLKDE and therefore could effectively speed up species habitat 
suitability modeling and mapping tasks involving large numbers of species occurrences.

4.2 | Effects of bandwidth option

The effects of KDE bandwidth option (Section 2.2.1.1) were examined by running PyCLKDE with three different 
bandwidth options in estimating occurrence PDFs (i.e., “rule- of- thumb” fixed bandwidth, cross- validated fixed 

TA B L E  3 Execution time (s) of PyCLKDE on the desktop workstation using NVIDIA GPU as computing device

Total

I/O KDE

OtherRead Write Background Occurrence

eBird occurrences only 317.03 39.65 57.00 2.66 2.57 215.15

Data- level integration 315.48 38.96 57.01 2.60 2.60 214.31

Knowledge- level 
integration

389.92 38.89 57.72 2.53 4.81 285.97

Model- level integration 445.52 39.11 56.33 2.60 5.00 342.47
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bandwidth, and cross- validated adaptive bandwidth) for modeling and mapping habitat suitability of E. virescens by 
integrating occurrences from eBird and iNaturalist at the model level. The major effect of bandwidth option on the 
computing performance of PyCLKDE lies in the time spent on estimating occurrence PDFs using KDE (Table 6). 
On the experiment dataset, estimating occurrence PDFs with cross- validated fixed bandwidth and adaptive band-
width is roughly 16 times more time- consuming compared to estimating PDFs with “rule- of- thumb” bandwidth, 
as the optimization procedure used to determine optimal bandwidth based on cross- validation involves multiple 
iterations of KDE computations.

The KDE bandwidth option also affects estimated occurrence PDFs (and hence modeling and mapping 
results). The smoothness of estimated occurrence PDFs differs across three bandwidth options (Figure 4). 
Compared to “rule- of- thumb” bandwidth, using cross- validated bandwidth (fixed or adaptive) reveals more 
subtle density variations along environmental gradients (e.g., mean annual temperature). PDFs estimated 
with cross- validated bandwidth thus could potentially offer more detailed ecological insights on how species 

TA B L E  4 Execution time (s) of PyCLKDE on the desktop workstation with KDE computations implemented in 
native Python

Total

I/O KDE

OtherRead Write Background Occurrence

eBird occurrences only 2,465.36 40.74 57.82 945.72 1,169.49 251.58

Data- level integration 2,542.58 40.59 57.27 931.19 1,206.90 306.64

Knowledge- level 
integration

2,630.23 40.33 56.88 928.81 1,207.07 397.14

Model- level integration 2,625.18 40.92 56.67 922.67 1,172.12 432.81

TA B L E  5 Execution time (s) of PyCLKDE on the desktop workstation with OpenCL- based parallel computing 
on CPU

Total

I/O KDE

OtherRead Write Background Occurrence

eBird occurrences only 313.72 38.79 56.90 2.95 3.16 211.91

Data- level integration 313.43 38.93 56.17 2.97 3.25 212.12

Knowledge- level 
integration

386.55 38.92 56.35 2.93 4.67 283.68

Model- level integration 442.16 39.21 57.04 2.92 4.72 338.27

TA B L E  6 Execution time (s) of PyCLKDE with different bandwidth options running on the desktop 
workstation using NVIDIA GPU as computing device

Total

I/O KDE

OtherRead Write Background Occurrence

Fixed bandwidth 
(“rule- of- thumb”)

445.52 39.11 56.33 2.60 5.00 342.47

Fixed bandwidth 
(cross- validation)

521.29 39.26 57.48 2.76 81.83 339.95

Adaptive bandwidth 
(cross- validation)

522.71 39.19 57.37 2.79 83.32 340.04
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respond to environmental conditions at higher resolution (e.g., PDFs estimated based on occurrences from 
iNaturalist). However, they also risk amplifying noise in the sample data (e.g., PDFs estimated based on occur-
rences from eBird are overly “spiky”). In contrast, PDFs estimated with “rule- of- thumb” bandwidth are more 
robust against noise and thus could uncover generalized species– environment response curves. PyCLKDE 
uses “rule- of- thumb” bandwidth by default for estimating occurrence PDFs, while users can switch to the other 
two bandwidth options. One should choose the proper bandwidth option based on the specific context of the 
HSM task at hand.

4.3 | Compatibility with computing devices

PyCLKDE was run on different computing devices in the two computing environments (Table 2) to assess its 
compatibility with various computing devices and their impacts on computing performance of PyCLKDE. On the 
desktop, running PyCLKDE on GPU (Table 3) to integrate species occurrences from eBird and iNaturalist at the 
model level for modeling and mapping habitat suitability took about the same amount of time as running it on 

F I G U R E  4 Occurrence PDFs regarding mean annual temperature estimated based on occurrence locations 
from eBird and iNaturalist using three different bandwidth options
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a multi- core CPU (i.e., ~6 min) (Table 5). They are both ~7 times faster and over 275 times faster than the non- 
parallel benchmark in terms of total execution time and KDE computation time, respectively.

Running PyCLKDE on the laptop to complete the same HSM task (Table 7) is slower compared to the desktop, 
which is as expected given the desktop is equipped with more advanced CPU and GPU (e.g., higher max clock 
speeds). On the laptop, it took 75 min with the non- parallel benchmark, and 80% of the total execution time (i.e., 
60 min) was spent on KDE computations. Using PyCLKDE with OpenCL- based parallel computing on a multi- core 
CPU, discrete GPU, or integrated GPU, it took about 13 min (i.e., 6 times faster than the non- parallel benchmark) 
and less than 2% of the total execution time was spent on KDE computations. Only comparing KDE computation 
time against the non- parallel benchmark, KDE computations with parallel computing on a CPU, discrete GPU, and 
integrated GPU are 237 times, 619 times, and 543 times faster, respectively.

Clearly, PyCLKDE is able to exploit computing environments and computing devices of varying computing 
capabilities to significantly speed up KDE computations and thus enable HSM tasks involving a large number of 
species occurrences.

4.4 | Impacts of block dimension

PyCLKDE was run with different settings of block dimension by which covariates are read into computer memory 
to examine how block dimension setting affects I/O time. The tested block dimensions were obtained by multi-
plying an integer number (e.g., 1, 2, 4, 6, 8, and 10) by the block dimension of the physical GeoTIFF files (1,024 
rows × 1,216 columns). Overall, time spent on reading covariates increases with larger blocks whilst time spent on 
writing the resultant suitability map decreases (Table 8). With respect to the combined I/O time on the desktop, 

TA B L E  7 Execution time (s) of PyCLKDE on the laptop for modeling and mapping habitat suitability by 
integrating species occurrences from eBird and iNaturalist at the model level

Total

I/O KDE

OtherRead Write Background Occurrence

Benchmark (non- parallel) 4,510.38 60.26 139.02 1,614.71 2,027.82 668.57

CPU parallel 803.29 55.28 137.78 5.78 9.58 594.88

GPU (discrete) parallel 759.55 48.02 142.04 2.27 3.61 563.62

GPU (integrated) parallel 763.23 59.41 137.49 3.20 3.50 559.63

TA B L E  8 Execution time of PyCLKDE with different block dimension settings running on the desktop using 
NVIDIA GPU as computing device. PyCLKDE was applied for modeling and mapping habitat suitability by 
integrating species occurrences from eBird and iNaturalist at the model level

Block dimension 
(rows × columns) Total

I/O KDE

OtherRead Write Background Occurrence

1024 × 1216 678.54 67.32 173.51 2.83 4.94 429.94

2048 × 2432 479.82 38.86 95.71 2.85 5.48 336.93

4096 × 4864 445.52 39.11 56.33 2.60 5.00 342.47

6144 × 7296 619.66 215.61 33.95 2.63 4.68 362.79

8192 × 9728 703.94 283.02 37.21 2.55 4.79 376.36

10,240 × 12,160 838.32 350.97 24.14 2.83 4.64 455.74
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the optimal block dimension was 4,096 rows × 4,864 columns (corresponding to a multiplier of 4). With this block 
dimension setting, the total execution time (445.5 s) and I/O time (95.4 s) and its percentage relative to total 
execution time (21.4%) were both minimal. On the laptop, the optimal block dimension was 1,024 rows × 1,216 
columns, with which the total execution time (759.6 s) and I/O time (190 s) and its percentage (25%) were minimal 
(using the discrete GPU as computing device). Throughout the experiments, PyCLKDE was run with the two opti-
mal block dimensions on the desktop and laptop, respectively.

4.5 | Scalability to larger HSM tasks

Additional datasets were generated to evaluate the scalability of PyCLKDE to HSM tasks involving larger datasets. 
Besides the eBird occurrence dataset containing n = 54,684 occurrence locations, two larger artificial occurrence 
datasets with n = 11,000 occurrences and n = 22,000 occurrences, respectively, were obtained by generating 
random point locations in the study area. These two artificial occurrence datasets were used as species occur-
rences in PyCLKDE purely for computing performance evaluation purposes. Moreover, the original covariates at 
1 km spatial resolution were resampled to 500 m resolution (with the 1,024 rows × 1,216 columns file block layout 
maintained). The storage size of the 500 m resolution GeoTIFF files was roughly 152 GB. PyCLKDE was run on the 
desktop using GPU as computing device to model and map habitat suitability using each of the three occurrence 
datasets on each of the two covariate datasets (Table 9).

On the same covariate dataset, doubling the number of species occurrences increases the total execution time 
by 1.5-  to 2- fold, mainly through increased time on “other” computations (I/O time and KDE computation time did 
not change much). Covariate data size has a much more significant impact on execution times. Across the occur-
rence datasets, when spatial resolution improves from 1 km to 500 m (the number of cells increases 4- fold), total 
execution time increases by a factor of 8– 12, mainly through increasing combined I/O time by a factor of 9– 15 
(time on reading and writing increased by a factor of about 40 and 6, respectively) and time on “other” computa-
tions by a factor of 6– 10. Overall, the total execution time of PyCLKDE increases in a linear fashion on HSM tasks 
involving larger numbers of species occurrences or number of covariate cells.

TA B L E  9 Execution time of PyCLKDE on HSM tasks involving larger numbers of species occurrences and 
higher- resolution environmental covariates. Experiments were run on the desktop workstation using NVIDIA 
GPU as computing device to model and map habitat suitability based on a single occurrence dataset

Number of occurrences Total

I/O KDE

OtherRead Write Background Occurrence

1 km resolution covariates

54,684 317.03 39.65 57.00 2.66 2.57 215.15

110,000 469.52 40.52 76.81 3.09 3.61 345.50

220,000 915.95 39.84 69.50 3.09 4.28 799.25

500 m resolution covariates

54,684 3,831.73 1,674.67 350.49 3.02 3.03 1,800.53

110,000 5,617.38 1,613.72 438.44 3.01 3.46 3,558.75

220,000 6,976.04 1,624.10 421.02 3.13 4.38 4,923.42
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4.6 | Bottlenecks and potential improvements

As KDE computations are effectively accelerated through OpenCL- based parallel computing, the bottlenecks 
of PyCLKDE computing performance are I/O (~30% of total execution time) and “other” computations (~70% of 
total execution time) (Section 4.1). To speed up I/O, covariates could be read into memory in parallel with mul-
tiple threads, for example, using multiprocessing implemented in the Pathos Python package (https://pypi.org/
proje ct/patho s/). However, multi- thread reading incurs additional computational cost for maintaining the pool 
of parallel threads and, as a result, the time- saving by multi- thread reading may not be as significant, especially 
when a proper block dimension is already exploited to speed up reading (Section 4.4) (Zhang et al., 2021). Another 
potential improvement is to accelerate computations in the “other” category through parallel computation. Such 
computations in PyCLKDE are mostly array- involved computations and currently are implemented heavily relying 
on functionalities offered by the NumPy package, which is highly optimized for efficient manipulations on vectors, 
arrays, and matrices (Harris et al., 2020). Conducting these computations using customized OpenCL- based parallel 
computing that can be implemented based on the proposed computational framework (Section 2.1) may further 
speed up the computations, especially on very large datasets.

4.7 | Geospatial applications of GPU computing

As revealed by the experiments, parallel computing utilizing GPUs can greatly speed up PyCLKDE for habitat 
suitability modeling and mapping. Generally, GPU- based parallel computing could achieve much more significant 
acceleration compared to parallel computing utilizing multi- core CPUs, especially on large- size computational 
problems (Zhang et al., 2017, 2021). The reason is that, in contrast to CPUs that emphasize improving computing 
power on a small number of cores (and threads), many- core GPUs offer large numbers of simpler processors (e.g., 
thousands or more) for massive parallelism. GPU- based parallel computing can effectively exploit data and/or task 
parallelism and speed up geospatial analysis and modeling tasks (Tang et al., 2015; Tang & Wang, 2020; Zhang 
et al., 2017). The developed PyCLKDE framework contributes to advocating the application of GPU computing in 
geospatial domains to enable tackling data-  and computation- intensive problems that were previously intractable.

5  | CONCLUSIONS

To overcome the computational challenges facing big data- involved HSM tasks, this study develops a big data- 
enabled high- performance computational framework for efficiently conducting HSM on large numbers of species 
records and massive volumes of environmental covariates. Utilizing the block- based I/O mechanism, OpenCL- 
backed parallel computing, and other infrastructure offered by the computational framework, PyCLKDE was im-
plemented for flexibly integrating multi- source species data to model and map species habitat suitability. The 
computing performance of PyCLKDE was thoroughly evaluated through a case study of modeling and mapping 
E. virescens habitat suitability in the continental Americas using high- resolution environmental covariates and 
species observations obtained from two citizen science projects. Experiment results show that PyCLKDE can 
effectively exploit computing devices with varied computing capabilities, such as multi- core CPUs and discrete/
integrated GPUs on high- end workstations or “personal- grade” laptops, for parallel computing to accelerate HSM 
computations. With the support of PyCLKDE, rapidly conducting HSM at large spatial scales (e.g., continental, 
global) and at fine spatiotemporal resolutions is feasible, utilizing only commonly available computing resources.

Like PyCLKDE, other HSM modeling algorithms and spatial modeling and prediction methods can be implemented 
based on the utilities offered by the proposed computational framework. For example, digital soil mapping (DSM) is 
similar to HSM from a computational perspective as they both require environmental covariates and field samples 

https://pypi.org/project/pathos/
https://pypi.org/project/pathos/
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(species observations or soil samples) as inputs, based on which the relationship between environmental gradients 
and a target variable (habitat suitability or soil property) is modeled and applied for prediction (mapping). DSM algo-
rithms can thus be implemented based on the computational framework to support DSM efforts involving big data 
(Zhang et al., 2021). With these motivating examples, efforts are called for to develop similar geocomputation tools 
based on the proposed framework to realize the potential of effectively performing geospatial big data analytics uti-
lizing heterogenous computing resources on “personal- grade” computing resources (Zhang, 2010).
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